Sebastian Buschjäger, Sibylle Hess and Katharina Morik

Thirty-Sixth AAAI Conference on Artificial Intelligence 2022

Artificial Intelligence Group@TU Dortmund University Data Mining Group@ TU Eindhoven TU/e - Collaborative Research Center 876



In 2018 Roughly 22 Billion IoT Devices world wide By 2025  $\approx$  38 Billion IoT Devices world wide  $^1$ 



In 2018 Roughly 22 Billion IoT Devices world wide By 2025  $\approx$  38 Billion IoT Devices world wide<sup>1</sup>

#### Clear benefits

- + Privacy and independence of data analysis
- + Reduced communication infrastructure costs
- + Faster response times





## Requirements for Online Learning on the Edge

### Computational efficiency

The algorithm must process examples at least as fast as new examples arrive.

## Requirements for Online Learning on the Edge

## Computational efficiency

The algorithm must process examples at least as fast as new examples arrive.

### Memory efficiency

The algorithm has only a limited budget of memory and fails if more memory is required.

## Requirements for Online Learning on the Edge

### Computational efficiency

The algorithm must process examples at least as fast as new examples arrive.

### Memory efficiency

The algorithm has only a limited budget of memory and fails if more memory is required.

#### **Evolving data streams**

The algorithm must adapt to changes in the new data distribution and preserve its performance.

Online Decision Tree Ensemble Learning

## Online Decision Tree Ensemble Learning



#### **Gradient-based Learners**

- $+\,$  constant memory consumption
- $+ \ \ joint \ optimization \ of \ all \ trees$
- backpropagation through entire tree

## Online Decision Tree Ensemble Learning



#### **Gradient-based Learners**

- $+ \ \ {\sf constant \ memory \ consumption}$
- + joint optimization of all trees
- backpropagation through entire tree

#### **Incremental Learners**

- + fast
- + proven in practice
- nodes are not removed

# Online Decision Tree Ensemble Learning



#### **Gradient-based Learners**

- $+\,$  constant memory consumption
- + joint optimization of all trees
- backpropagation through entire tree

#### **Incremental Learners**

- + fast
- + proven in practice
- nodes are not removed

Can we design simple and small online ensembles?

## **Revisiting Sliding Windows**



- + We can use a batch algorithm to train h(x)
- + We quickly adapt to concept drift
- No long-term learning possible

## **Revisiting Sliding Windows**



- + We can use a batch algorithm to train h(x)
- + We quickly adapt to concept drift
- No long-term learning possible

## **Revisiting Sliding Windows**



- + We can use a batch algorithm to train h(x)
- + We quickly adapt to concept drift
- No long-term learning possible

## **Long-Term Learning With Sliding Windows**



Often Local Patterns repeat over long running processes

**Hence** The two classifiers  $h_1$  and  $h_2$  are redundant. We should use  $h_1$ 

## Long-Term Learning With Sliding Windows



Often Local Patterns repeat over long running processes

**Hence** The two classifiers  $h_1$  and  $h_2$  are redundant. We should use  $h_1$ 

Idea Learn an ensemble of local patterns from sliding windows

$$f(x) = \sum_{i=1}^{M} w_i h_i(x)$$

Formally Let  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$  be the set of trees learned on local patterns:

$$\mathop{\arg\min}_{w \in \mathbb{R}^K} \ \sum_{t=1}^T \ell\left(f_{S[0:t-1]}(x_t), y_t\right) \ \text{s.t.} \ \|w\|_0 \leq M, w_i \geq 0, \sum_{i=1}^K w_i = 1$$

- ullet  $f_{S[0:t-1]}\colon \mathbb{R}^d o \mathbb{R}^C$  is the model at time t
- $\ell \colon \mathbb{R}^{\mathcal{C}} \times \mathcal{Y} \to \mathbb{R}_+$  is the loss

Formally Let  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$  be the set of trees learned on local patterns:

$$\mathop{\arg\min}_{w \in \mathbb{R}^K} \ \sum_{t=1}^T \ell\left(f_{S[0:t-1]}(x_t), y_t\right) \ \text{s.t.} \ \|w\|_0 \leq M, w_i \geq 0, \sum_{i=1}^K w_i = 1$$

- ullet  $f_{S[0:t-1]}\colon \mathbb{R}^d o \mathbb{R}^C$  is the model at time t
- $\ell \colon \mathbb{R}^{\mathcal{C}} \times \mathcal{Y} \to \mathbb{R}_+$  is the loss
- $M \ge 1$  is the maximum number of ensemble members

Formally Let  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$  be the set of trees learned on local patterns:

$$\mathop{\arg\min}_{w \in \mathbb{R}^K} \ \sum_{t=1}^T \ell\left(f_{S[0:t-1]}(x_t), y_t\right) \ \text{s.t.} \ \|w\|_0 \leq M, w_i \geq 0, \sum_{i=1}^K w_i = 1$$

- $f_{S[0:t-1]} \colon \mathbb{R}^d o \mathbb{R}^C$  is the model at time t
- $\ell \colon \mathbb{R}^{C} \times \mathcal{Y} \to \mathbb{R}_{+}$  is the loss
- $M \ge 1$  is the maximum number of ensemble members
- $\|w\|_0 = \sum_{i=1}^K \mathbb{1}\{w_i \neq 0\}$  is the 0-norm

Formally Let  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$  be the set of trees learned on local patterns:

$$\mathop{\arg\min}_{w \in \mathbb{R}^K} \ \sum_{t=1}^T \ell\left(f_{S[0:t-1]}(x_t), y_t\right) \ \text{s.t.} \ \|w\|_0 \leq M, w_i \geq 0, \sum_{i=1}^K w_i = 1$$

- $f_{S[0:t-1]} \colon \mathbb{R}^d \to \mathbb{R}^C$  is the model at time t
- $\ell \colon \mathbb{R}^{C} \times \mathcal{Y} \to \mathbb{R}_{+}$  is the loss
- $M \ge 1$  is the maximum number of ensemble members
- $\|w\|_0 = \sum_{i=1}^K \mathbb{1}\{w_i \neq 0\}$  is the 0-norm

**Formally** Let  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$  be the set of trees learned on local patterns:

$$\mathop{\arg\min}_{w \in \mathbb{R}^K} \ \sum_{t=1}^T \ell\left(f_{S[0:t-1]}(x_t), y_t\right) \ \text{s.t.} \ \|w\|_0 \leq M, w_i \geq 0, \sum_{i=1}^K w_i = 1$$

with

- $f_{S[0:t-1]} \colon \mathbb{R}^d \to \mathbb{R}^C$  is the model at time t
- $\ell \colon \mathbb{R}^{C} \times \mathcal{Y} \to \mathbb{R}_{+}$  is the loss
- $M \ge 1$  is the maximum number of ensemble members
- $\|w\|_0 = \sum_{i=1}^K \mathbb{1}\{w_i \neq 0\}$  is the 0-norm

For this talk Focus on the MSE loss

$$\ell(f_{S[0:t-1]}(x_t), y_t) = \frac{1}{C} \|f_{S[0:t-1]}(x_t) - y_t\|^2$$

#### **Proximal Gradient Descent**

$$\mathbf{w} \leftarrow \mathcal{P}\left(\mathbf{w} - \alpha \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})\right),$$

where

•  $\mathcal{B}$  is the current window with  $|\mathcal{B}| = B$  examples

#### **Proximal Gradient Descent**

$$\mathbf{w} \leftarrow \mathcal{P}\left(\mathbf{w} - \alpha \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})\right),$$

where

- ullet is the current window with  $|\mathcal{B}|=B$  examples
- $\nabla_w L_{\mathcal{B}}(w)$  is the gradient on the current window

#### **Proximal Gradient Descent**

$$\mathbf{w} \leftarrow \mathcal{P}\left(\mathbf{w} - \alpha \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})\right),$$

where

- ullet is the current window with  $|\mathcal{B}|=B$  examples
- $\nabla_w L_{\mathcal{B}}(w)$  is the gradient on the current window
- $\alpha \in \mathbb{R}_+$  is the step-size

#### **Proximal Gradient Descent**

$$\mathbf{w} \leftarrow \mathcal{P}\left(\mathbf{w} - \alpha \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})\right),$$

where

- $\mathcal{B}$  is the current window with  $|\mathcal{B}| = B$  examples
- $\nabla_w L_B(w)$  is the gradient on the current window
- $\alpha \in \mathbb{R}_+$  is the step-size
- $\mathcal{P}(w)$  is the prox-operator for the feasible set  $\Delta = \left\{ w \in \mathbb{R}_+^K \middle| \sum_{i=1}^K w_i = 1, \|w\|_0 = M \right\}$

#### **Proximal Gradient Descent**

$$\mathbf{w} \leftarrow \mathcal{P}\left(\mathbf{w} - \alpha \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w})\right),$$

where

- $\mathcal{B}$  is the current window with  $|\mathcal{B}| = B$  examples
- $\nabla_w L_{\mathcal{B}}(w)$  is the gradient on the current window
- $\alpha \in \mathbb{R}_+$  is the step-size
- $\mathcal{P}(w)$  is the prox-operator for the feasible set  $\Delta = \left\{ w \in \mathbb{R}_+^K \middle| \sum_{i=1}^K w_i = 1, \|w\|_0 = M \right\}$

Our paper / Kyrillidis et al. 2013 Details for prox-operator

## Putting it all together: Shrub Ensembles (SE)

Idea If a tree is helpful to the ensemble, then it should have a large weight

#### Algorithm 1: Shrub Ensembles. 1: $w \leftarrow (0); \mathcal{B} \leftarrow []; \mathcal{H} \leftarrow []$ ▶ Init. 2: **for** next item (x, y) **do** if $|\mathcal{B}| = B$ then 3: □ Update batch $\mathcal{B}$ .pop\_first() $\mathcal{B}$ .append ((x, y)) $h_{new} \leftarrow \text{train}(\mathcal{B})$ Add new classifier $\mathcal{H}$ .append $(h_{new})$ $w \leftarrow (w_1, \ldots, w_M, 0)$ ▷ Initialize weight $w \leftarrow w - \alpha \nabla_w L_B(w)$ $w, \mathcal{H} \leftarrow \text{sorted}(w, \mathcal{H})$ 10: 11: $w \leftarrow \mathcal{P}(w)$ ▷ Project on feasible set $w, \mathcal{H} \leftarrow \text{prune}(w, \mathcal{H})$ ▶ Remove zero weights 12:

**Runtime**  $\mathcal{O}\left(dB^2 \log B + \log M\right)$  per example with d features

**Runtime** 
$$\mathcal{O}\left(dB^2 \log B + \log M\right)$$
 per example with d features

Runtime 
$$\mathcal{O}\left(dB^2 \log B\right) + \log M$$
 per example with d features

CART prox operator

Runtime 
$$\mathcal{O}\left(dB^2 \log B\right) + \log M$$
 per example with d features

CART \_\_\_\_\_\_ prox operator

Memory  $\mathcal{O}(dB+2\cdot B\cdot (M+1))$  per example with d features

Runtime 
$$\mathcal{O}\left(dB^2 \log B\right) + \log M$$
 per example with d features

CART prox operator

**Memory** 
$$\mathcal{O}(dB + 2 \cdot B \cdot (M+1))$$
 per example with d features window







**Behaviour** Let  $m \leq M$  be the number of models in the ensemble and let  $\forall j=1,\ldots,m\colon h_j(x_B)\neq y_B$ . If SE trains fully-grown trees such that  $\forall i=1,\ldots,B\colon h(x_i)=y_i$  it holds for  $\alpha>\frac{BC}{4m}$  that:

- (1) If m < M, then h is added to the ensemble
- (2) If m = M, then h replaces the tree with the smallest weight from the ensemble

## **Experimental Insights: Quantitative Analysis**

Goal Compare Accuracy-Memory Trade-off of different configurations

- 1) Plot Pareto Front of best performing configurations against accuracy
- 2) Compute Area Under the Pareto Front to measure accuracy-memory trade-off
- 3) Rank each method according to its trade-off and plot a CD-diagram

### **Experimental Insights: Quantitative Analysis**

Goal Compare Accuracy-Memory Trade-off of different configurations

- 1) Plot Pareto Front of best performing configurations against accuracy
- 2) Compute Area Under the Pareto Front to measure accuracy-memory trade-off
- 3) Rank each method according to its trade-off and plot a CD-diagram



- SE: Shrub Ensembles
- SRP: Streaming Random Patches
- ARP: Adaptive Random Forest
- HTT: HoeffdingAnyTree
   CD (Colling) Constant December 1
- SB: (Online) Smooth Boost
- Bag: (Online) Bagging
- HT: HoeffdingTrees
- NB: (Online) NaiveBayes
- SDT: Soft Decision Trees



## **Experimental Insights: Qualitative Analysis (1)**







# **Experimental Insights:** Qualitative Analysis (2)





### Edge learning becomes more important every year

- Computational efficiency
- Memory efficiency
- Evolving data streams

### Edge learning becomes more important every year

- Computational efficiency
- Memory efficiency
- Evolving data streams

Current approaches Unbounded memory or costly gradients

### Edge learning becomes more important every year

- Computational efficiency
- Memory efficiency
- Evolving data streams

Current approaches Unbounded memory or costly gradients

Shrub Ensembles Bounded memory and simple gradients

- ullet Train small trees (o Shrubs) on sliding window
- Maintain tree weights via proximal gradient descent
- Prune unimportant trees

Results Better accuracy-memory trade-off than existing methods!

