Very Fast Streaming Submodular Function Maximization

Sebastian Buschjäger, Jan-Philipp Honysz, Lukas Pfahler and Katharina Morik

Submodular Function Maximization arises in many different applications fields in Machine Learning and Data Science, e.g.

- Selecting the most informative items from a collection
- Maximizing the coverage of objects in an area
- Estimating the parameters of Determinantal Point Processes

Submodular Function Maximization

 $\max_{S \subseteq V, |S| \le K} f(S)$

where $f:2^{V} \rightarrow \mathbb{R}_{\downarrow}$ is a set-function and K is a cardinality constraint

Gain of item e:	∆(e S)=f(SU{e})-f(S)			
Submodularity:	$\Delta(e \mid A) \geq \Delta(e \mid B) \text{ for } A \subseteq B \subseteq V$			
Maximum singleton:	$m = max \{ f(\{ e \}) \mid e \in V \}$			

Streaming Submodular Function Maximization

The groundset V is often large. Therefore, a line of research studies streaming maximization algorithms which consume one item at a time. By submodularity we can estimate the optimal function value as

$$m \leq f(S) \leq Km$$

Thus, many streaming algorithms compute the gain of an element and add it to S once it exceeds a given novelty threshold depending on an estimation of the true f(S) from [m, Km]. However, the optimal threshold is unknown beforehand so that multiple thresholds must be used in parallel for sufficient performance.

The ThreeSieves Algorithm

Using more thresholds leads to a better maximization performance, but also requires more memory and computations. Our core idea is to maintain a single, carefully calibrated threshold which leads to similar performance while using fewer resources. To do so, we start with a very large threshold (e.g. assuming f(S) =K m) and gradually decrease it once there is enough evidence that no future item in the data stream will 'out-value' the current threshold.

The Rule Of Three

We estimate the probability p(e | S, f, v) that the gain of e exceeds the threshold v given the current summary S. There are two cases:

- 1) If e is not added to S, update p given the negative outcome
- 2) If e is added to S, then S changed. Re-start the estimation of p

Note that p is estimated from data and hence comes with its own confidence interval. The Rule of Three states that the α =0.95 confidence interval after T negative tries is

 $0 \le p \le 3/T$

E.g.: After T = 1000 rejections $p \le 0.003$ with 95% confidence

Algorithmic Idea

- Start with largest available threshold and set t = 0
- If the gain exceeds the threshold, add e to S and set t = 0
- If the gain does not exceed the threshold, increase t by one
- If $t \ge T$, lower threshold and set t = 0

Results

Algorithm	Approximation Ratio	Memory	Queries per Element	Stream	Ref.
Greedy	$1 - 1 / \exp(1)$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	×	[23]
StreamGreedy	$1/2 - \varepsilon$	$\mathcal{O}\left(K ight)$	$\mathcal{O}(K)$	×	[13]
PreemptionStreaming	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(K)$	\checkmark	[4]
IndependentSetImprovement	1/4	$\mathcal{O}\left(K ight)$	$\mathcal{O}(1)$	\checkmark	[8]
Sieve-Streaming	$1/2 - \varepsilon$	$\mathcal{O}(K\log K/arepsilon)$	$\mathcal{O}(\log K/arepsilon)$	\checkmark	[2]
Sieve-Streaming++	$1/2 - \varepsilon$	$\mathcal{O}(K/arepsilon)$	$\mathcal{O}(\log K/arepsilon)$	\checkmark	[16]
Salsa	$1/2 - \varepsilon$	$\mathcal{O}(K\log K/arepsilon)$	$\mathcal{O}(\log K/arepsilon)$	(√)	[24]
QuickStream	$1/(4c) - \varepsilon$	$\mathcal{O}(cK\log K\log(1/\varepsilon))$	$\mathcal{O}(\lceil 1/c \rceil + c)$	\checkmark	[18]
ThreeSieves	$(1-\varepsilon)(1-1/\exp(1))$ with prob. $(1-\alpha)^K$	$\mathcal{O}(K)$	$\mathcal{O}(1)$	\checkmark	this paper

ThreeSieves: Smaller resource consumption with better approximation-ratio to existing work. However, the approximation-ratio now holds with high probability $(1-\alpha)^{K}$

ThreeSieves: Speed and memory is comparable with a random selection. However, the performance is comparable (or sometimes better) than existing work.

Submodular Streaming