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Resource consumption of computing hardware
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Resource consumption of computing hardware

Question How many resources are required by new computing hardware in general?
Idea Report carbon footprint as a (weak) proxy for general resource consumption

Apple's Product Environ mental Report[https://www‘apple.cum/envirunment/]
(excluding end-of-life processing here)

IPhone-14 1 Year[kg] 3 Years([kg] 10 Years [kg]

Production 48.19 48.19 48.19
Transport 1.22 1.22 1.22
Useage 3.66 10.98 36.6
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Resource consumption of computing hardware

Question How many resources are required by new computing hardware in general?
Idea Report carbon footprint as a (weak) proxy for general resource consumption

Apple's Product Environ mental Report[https://www‘apple.cum/envirunment/]
(excluding end-of-life processing here)

IPhone-14  1Year [%] 3 Years[%] 10 Years|[%]

Production 90.8 79.0 56.0
Transport 2.3 19 1.4
Useage 6.9 18.0 42.5

(Percentages may not total 100 due to rounding.)
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Resource consumption of computing hardware

Question How many resources are required by new computing hardware in general?
Idea Report carbon footprint as a (weak) proxy for general resource consumption

Apple's Product Environ mental Report[https://www‘apple.cum/envirunment/]
(excluding end-of-life processing here)

IPhone-14  1Year [%] 3 Years[%] 10 Years|[%]

Production 90.8 79.0 56.0
Transport 2.3 19 1.4
Useage 6.9 18.0 42.5

(Percentages may not total 100 due to rounding.)

Clear We must use an IPhone-14 for around ten years to break even with production costs!
But Average life-cycle for an IPhone-14 are 3 to 4 years

Thus We have to run new algorithms on older (= smaller) hardware!


https://www.apple.com/environment/

A Closer Look at Older / Smaller Hardware

MCU CPU Flash (S)RAM  Power
Arduino Uno (ATMega128P) 16MHz 32KB 2KB 12mA
Arduino Mega (ATMega2560) 16MHz 256KB 8KB 6mA
STM32L0 (Cortex-M0) 32MHz 192KB 20KB 7mA
Arduino MKR1000 (Cortex-M0)  48MHz 256KB 32KB 4mA
STM32F2 (Cortex-M3) 120MHz 1MB 128KB 21mA
STM32F4 (Cortex-M4) 180MHz 2MB 384KB 50mA
RPI A+ 700MHz SD Card 256MB  80mA
RPi Zero 1GHz SD Card 512MB  80mA
RPi 3B 4@1.2GHz  SD Card 1GB 260mA
Apple A7 (IPhone 5) 2@1.4 Ghz  16-64 GB  1GB 320-485 mA

Design ML algorithms for older hardware
(— fewer computations, less memory)



Recap Additive Tree Ensembles

Axis-aligned Decision Trees Split data into groups of increasing label purity
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Recap Additive Tree Ensembles

Axis-aligned Decision Trees Split data into groups of increasing label purity

11 |12

h(x) = Zym;(x), mi(x) =1if xin leaf i else 0

Random Forest Train multiple DTs on bootstrap samples and average predictions

1 M
F0) = 75 S hitx)
i=1



Training Additive Ensembles for Small Devices

Cool RFs require minimal computations
And DTs are simple! RFs is a set of DTs. Hence, aren’'t Random Forests already small enough?!
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Unfortunately RFs can easily grow in size, even for smaller datasets.

adult avila bank eeg elec mnist

accuracy [%] 86.78 9858 9039 93.42 8898 96.53
model size [MB] 2499 32.85 2499 1495 2499 56.99




Training Additive Ensembles for Small Devices

Cool RFs require minimal computations
And DTs are simple! RFs is a set of DTs. Hence, aren’'t Random Forests already small enough?!

Unfortunately RFs can easily grow in size, even for smaller datasets.

adult avila bank eeg elec mnist

accuracy [%] 86.78 9858 9039 93.42 8898 96.53
model size [MB] 2499 32.85 2499 1495 2499 56.99

Can we compute a small and accurate tree ensemble?
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Ensemble Pruning Revisited

Idea 1 Given a large forest with M trees select only a few trees

‘&ﬁg
P » B 2 =

Formally

solve
arg min Z C(fw(X),y) st |w|lo =K< M
we{0,1}M (xy)ES



Ensemble Pruning Revisited (2)

Ensemble Pruning Standard method to select fewer trees in a forest
. Ranking[MartTneszuﬁoz and Suarez 2004, Li et al. 2012, Margineantu and Diettereich 1997]

Assign a score to each tree and select the top-k trees

. Clustering[6|acmto et al. 2000, Bakker and Heskes 2003, Lazarevic and Obradovic 2001, ...]

Cluster trees and then select a representative from each cluster

. MQ|p[Cavalcanti et al. 2016, Zhang et al. 2006]

Construct Mixed Quadratic Integer Program to select trees

. Ordering[Jiang et al. 2017, Lu et al. 2010, Margineantu and Dietterich 1997, ..]

Order the trees according to their overall contribution and select the first K trees



Leaf-Refinement

Idea 2 Use a small forest from the beginning and refine it[Ren etal 2015, Buschjager and Morik 2021)
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Leaf-Refinement

Idea 2 Use a small forest from the beginning and refine it[Ren etal 2015, Buschjager and Morik 2021)

mwag’@@ yig

Formally Perform SGD on the leaf nodes 6; = (yi1,...,Vir), 0 =1[01,...,0u]

EEHE

arg min Z 2(fo(x),y)
HGRM'L1"'LM (X,y)ES



Leaf-Refinement and Pruning combined

Why not combine both approaches?
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Leaf-Refinement and Pruning combined

Why not combine both approaches?

arg min Z £ (fwzp(x), ¥) HAllwll

WG[O,'\]M (x,y)eS
] | gerMbi-lm \
Relaxed Constraints /

Regularization to enforce pruning
Optimization over both parameters

Challenge Constraint optimization



Proximal Gradient Descent

Goal

arg min Z € (fw,0(X),y) + Mlwlls

wel0, T es
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Proximal Gradient Descent

Goal

argmin g(w,0) + AR(w, 9)
welo,1"
QeRM1--Lu
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Proximal Gradient Descent

Goal

argmin g(3) + AR(B)
B
where

- g(B) is the differentiable objective
- R(B) is a potentially non-differentiable and non-smooth regularizer

then we perform an SGD-like algorithm

6t+1 — PR,A <Bt - )” vﬁ[gB(Xt))

1
h——
V5956

. 1
Pea(6) = argminR() + 5512 63
ZERK



Proximal Gradient Descent (2)

Solve ]
Pr(B,A) = argminR(2) + 5[z — BI13
JERK 2\
For example
B iflBil > VX

0 else

R(B) = |1Bllo : Prx(B)i = {

R(B) = 1Bl : PrA(B)i = sgn(Bi)max(0, | B —

A)



Putting it all together

1
2
3
4
5
6
7
8
9

10:
11

12:
13:
14:

function PRUNE_AND_REFINE(T, hy, ..., hu)

91,...,9/\/[ <—get_leafs(hq,...,hM)
Wq,...,Wy < get_weights(hq,... hy)
for epoch 1,...,Edo
for next batch B in epoch do
W<+ W — agp(w)
0+ 60— agp(f)
W+ Py (w)
H+ QW0
fori=1,...,Mdo
if w; # 0 then
hi.update_leafs(6;)
H+ HU{h;}

W< Wu{w;}
return H, W

> Load leafs
> Load weights
> Perform PSGD for E epochs

> Update weights

> Update leafs
> Apply the prox operator

> Copy new leafs into original trees

I



Experiment 1: Compare with Vanilla Random Forest

adult  avila bank  eeg elec mnist

RE accuracy [%] 86.78 9858 90.39 9342 8898 96.53
model size [MB] 2499 3285 2499 1495 2499 56.99

LR+L1 accuracy [%] 87.25 99.78 905 95.55 9249  98.05
model size [MB]  0.06 3.52 0.07 5.88 1437  28.49
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Experiments 2: Compare against Ensemble Pruning

EEG Dataset Avila
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Experiments 3: Perform systematic experiments on more datasets

Comparison with more algorithms on more datasets 15 datasets, 10 methods, 920
hyperparameter configs per datasets = 13 800 models cross-validated

10 8 6 4 2
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Conclusion (1)

We should use smaller hardware / use existing hardware longer

- 80% of the CO2 procured during the life-cycle of an IPhone 14 are due to its production
- To break even between manufacturing and usage, we need to use an IPhone for 13 years

Tree ensembles are a perfect fit for older devices, but still too large

- Ensemble Pruning removes redundant members, making ensembles smaller and better

- Leaf-Refinement refines prob. estimates in the leaves, making small ensembles better
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Conclusion (2)

Leaf-Refinement and Ensemble Pruning combined

- We can combine Leaf-Refinement and Ensemble Pruning via an L, regularization term
- Proximal Gradient Descent is the ideal algorithm for refinement and pruning
- Our novel method outperforms existing methods on a variety of datasets

Check out our software

% https://github.com/sbuschjaeger/Pypruning/

https://github.com/sbuschjaeger/leaf-refinement-experiments
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