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Resource consumption of computing hardware

Question How many resources are required by new computing hardware in general?

Idea Report carbon footprint as a (weak) proxy for general resource consumption

Apple’s Product Environmental Report[https://www.apple.com/environment/]
(excluding end-of-life processing here)

IPhone-14 1 Year [%] 3 Years [%] 10 Years [%]

Production 90.8 79.0 56.0
Transport 2.3 1.9 1.4
Useage 6.9 18.0 42.5

(Percentages may not total 100 due to rounding.)

Clear We must use an IPhone-14 for around ten years to break even with production costs!

But Average life-cycle for an IPhone-14 are 3 to 4 years

Thus We have to run new algorithms on older (≈ smaller) hardware!
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A Closer Look at Older / Smaller Hardware

MCU CPU Flash (S)RAM Power

Arduino Uno (ATMega128P) 16MHz 32KB 2KB 12mA
Arduino Mega (ATMega2560) 16MHz 256KB 8KB 6mA
STM32L0 (Cortex-M0) 32MHz 192KB 20KB 7mA
Arduino MKR1000 (Cortex-M0) 48MHz 256KB 32KB 4mA
STM32F2 (Cortex-M3) 120MHz 1MB 128KB 21mA
STM32F4 (Cortex-M4) 180MHz 2MB 384KB 50mA
RPi A+ 700MHz SD Card 256MB 80mA
RPi Zero 1GHz SD Card 512MB 80mA
RPi 3B 4@1.2GHz SD Card 1GB 260mA
Apple A7 (IPhone 5) 2@1.4 Ghz 16-64 GB 1GB 320-485 mA

Design ML algorithms for older hardware
(→ fewer computations, less memory)

2



Recap Additive Tree Ensembles

Axis-aligned Decision Trees Split data into groups of increasing label purity
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h(x) =
L∑
i=1

yiπi(x), πi(x) = 1 if x in leaf i else 0

Random Forest Train multiple DTs on bootstrap samples and average predictions

f(x) = 1
M

M∑
i=1

hi(x)
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Training Additive Ensembles for Small Devices

Cool RFs require minimal computations
And DTs are simple! RFs is a set of DTs. Hence, aren’t Random Forests already small enough?!

Unfortunately RFs can easily grow in size, even for smaller datasets.

adult avila bank eeg elec mnist

accuracy [%] 86.78 98.58 90.39 93.42 88.98 96.53
model size [MB] 24.99 32.85 24.99 14.95 24.99 56.99

Can we compute a small and accurate tree ensemble?
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Ensemble Pruning Revisited

Idea 1 Given a large forest with M trees select only a few trees

Formally

fw(x) =
1
K

M∑
i=1

wihi(x)

solve
argmin
w∈{0,1}M

∑
(x,y)∈S

ℓ (fw(x), y) s.t. ∥w∥0 = K≪ M
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Ensemble Pruning Revisited (2)

Ensemble Pruning Standard method to select fewer trees in a forest

• Ranking[Martínez-Muñoz and Suárez 2004, Li et al. 2012, Margineantu and Diettereich 1997]
Assign a score to each tree and select the top-k trees

• Clustering[Giacinto et al. 2000, Bakker and Heskes 2003, Lazarevic and Obradovic 2001, ...]
Cluster trees and then select a representative from each cluster

• MQIP[Cavalcanti et al. 2016, Zhang et al. 2006]
Construct Mixed Quadratic Integer Program to select trees

• Ordering[Jiang et al. 2017, Lu et al. 2010, Margineantu and Dietterich 1997, ...]
Order the trees according to their overall contribution and select the first K trees

6



Leaf-Refinement

Idea 2 Use a small forest from the beginning and refine it[Ren et al. 2015, Buschjäger and Morik 2021]

Formally Perform SGD on the leaf nodes θi = (yi,1, . . . , yi,Li), θ = [θ1, . . . , θM]

argmin
θ∈RM·L1...LM

∑
(x,y)∈S

ℓ (fθ(x), y)
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Leaf-Refinement and Pruning combined

Why not combine both approaches?

argmin
w∈[0,1]M

θ∈RM·L1...LM

∑
(x,y)∈S

ℓ (fw,θ(x), y) + λ∥w∥1

Challenge Constraint optimization
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Leaf-Refinement and Pruning combined

Why not combine both approaches?

argmin
w∈[0,1]M

θ∈RM·L1...LM

∑
(x,y)∈S

ℓ (fw,θ(x), y) + λ∥w∥1

Relaxed Constraints

Optimization over both parameters
Regularization to enforce pruning
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Proximal Gradient Descent

Goal

argmin
w∈[0,1]M

θ∈RM·L1...LM

∑
(x,y)∈S

ℓ (fw,θ(x), y) + λ∥w∥1

where

• g(β) is the differentiable objective
• R(β) is a potentially non-differentiable and non-smooth regularizer

then we perform an SGD-like algorithm

βt+1 ← PR,λ

(
βt − αt

1
∥∇βtgB(βt)∥

∇βtgB(xt)
)

PR,λ(β) = argmin
z∈RK

R(z) + 1
2λ∥z− β∥22
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Proximal Gradient Descent (2)

Solve
PR(β, λ) = argmin

z∈RK
R(z) + 1

2λ∥z− β∥22

For example

R(β) = ∥β∥0 : PR,λ(β)i =

{
βi if|βi| ≥

√
2λ

0 else

R(β) = ∥β∥1 : PR,λ(β)i = sgn(βi)max(0, |βi| − λ)
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Putting it all together

1: function PRUNE_AND_REFINE(T ,h1, . . . ,hM)
2: θ1, . . . , θM ← get_leafs(h1, . . . ,hM) ▷ Load leafs
3: w1, . . . ,wM ← get_weights(h1, . . . ,hM) ▷ Load weights
4: for epoch 1, . . . , E do ▷ Perform PSGD for E epochs
5: for next batch B in epoch do
6: w← w− αgB(w) ▷ Update weights
7: θ ← θ − αgB(θ) ▷ Update leafs
8: w← Pλ (w) ▷ Apply the prox operator
9: H← ∅,W← ∅
10: for i = 1, . . . ,M do
11: if wi ̸= 0 then
12: hi.update_leafs(θi) ▷ Copy new leafs into original trees
13: H← H ∪ {hi}
14: W← W ∪ {wi}

return H,W 11



Experiment 1: Compare with Vanilla Random Forest

adult avila bank eeg elec mnist

RF accuracy [%] 86.78 98.58 90.39 93.42 88.98 96.53
model size [MB] 24.99 32.85 24.99 14.95 24.99 56.99

LR+L1 accuracy [%] 87.25 99.78 90.5 95.55 92.49 98.05
model size [MB] 0.06 3.52 0.07 5.88 14.37 28.49
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Experiments 2: Compare against Ensemble Pruning

EEG Dataset
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Experiments 3: Perform systematic experiments on more datasets

Comparison with more algorithms on more datasets 15 datasets, 10 methods, 920
hyperparameter configs per datasets⇒ 13 800 models cross-validated

246810

128

256

512

1024

2048

M
em

or
y

co
ns

tr
ai

nt
[K

B
]

COMP
DREP
IC
IE
L1
L1+LR
LMD
RE
RF
LR

14



Conclusion (1)

We should use smaller hardware / use existing hardware longer

• 80% of the CO2 procured during the life-cycle of an IPhone 14 are due to its production
• To break even between manufacturing and usage, we need to use an IPhone for 13 years

Tree ensembles are a perfect fit for older devices, but still too large

• Ensemble Pruning removes redundant members, making ensembles smaller and better
• Leaf-Refinement refines prob. estimates in the leaves, making small ensembles better
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Conclusion (2)

Leaf-Refinement and Ensemble Pruning combined

• We can combine Leaf-Refinement and Ensemble Pruning via an L1 regularization term
• Proximal Gradient Descent is the ideal algorithm for refinement and pruning
• Our novel method outperforms existing methods on a variety of datasets

Check out our software

https://github.com/sbuschjaeger/Pypruning/

https://github.com/sbuschjaeger/leaf-refinement-experiments
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